

RU	ТЕХНИЧЕ	СКАЯ СПЕЦИФ	ИКАЦИЯ	ред. В					
	ST 00356								
Р	73.DN25	22M.01	F09						
Р	73.DN32	21M.01							

ГИДРАВЛИЧЕСКИЕ РАЗДЕЛИТЕЛИ

Описание

Гидравлические разделители Barberi, называемые также разъединителями, гидрострелками или гидравлическими компенсаторами, применяются для обеспечения гидравлической независимости двух контуров: например, контура теплогенератора (первичного контура) и контура, служащего для распределения теплоносителя между потребителями (вторичного контура). При этом насосы обоих контуров работают наиболее оптимальным образом, при котором исключается их влияние друг на друга. В конструкции этих устройств предусмотрены фитинги, предназначенные для подсоединения воздухоотводчика, сливного крана для опорожнения системы и датчиков температуры. Разделители изготовлены из сварных стальных конструкций, окрашенных черной краской, которая образует защитное покрытие. Разделители поставляются с теплоизолированным корпусом, предназначенным для ограничения рассеивания тепла и, в зависимости от модели, с крепежными кронштейнами или напольной опорой.

Ассортимент продукции

21M.01

Теплоизолированный гидравлический разделитель DN 25 для установки в горизонтальном и вертикальном поло-Серия 21М.01 жении. Укомплектован накидными гайками для подсоединения к коллектору. Теплоизолированный гидравлический разделитель DN 25 с внутренними сетками для облегчения деаэрации и шламоотделения. Серия 22М.01

Серия P73.DN25 Теплоизолированный гидравлический разделитель DN 25 с крепежными кронштейнами.

Серия P73.DN32 Теплоизолированный гидравлический разделитель DN 32 с крепежными кронштейнами.

Теплоизолированный гидравлический разделитель DN 100 и DN 150 с напольной телескопической опорой и Серия F09 внутренними сетками для облегчения деаэрации и шламоотделения.

Характеристики

Диапазон рабочей температуры:

- P73.DN25, P73.DN32: -10-110 °C (без замерзания)
- 21M.01, 22M.01: **0–110 °С (без замерзания)**
- F09: **0–110 °С (без замерзания)**

Максимальное рабочее давление:

- P73.DN25, P73.DN32: 4 bar
- 22M.01: 10 bar
- 21M.01, F09: 6 bar

Совместимые рабочие жидкости: вода для систем отопления, гликолевые растворы (макс. 30% для арт. 21М.01 и 22М.01, макс. 50% для арт. P73.DN25, P73.DN32 и F09)

Фитинги: с внутренней резьбой ЕN 10226-1/с наружной резьбой ISO 228-1/фланцевые EN 1092 PN 16

Межосевое расстояние между фитингами:

- 21M.01: 125 mm
- F09 (сторона первичного контура/сторона вторичного контура): 600/300 mm

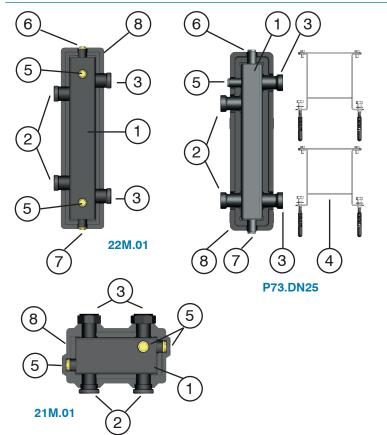
Материалы

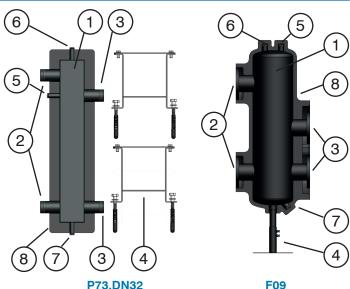
Корпус и фитинги: окрашенная сталь

Заглушки: **латунь CW617N** Прокладки: **EPDM**, волокно

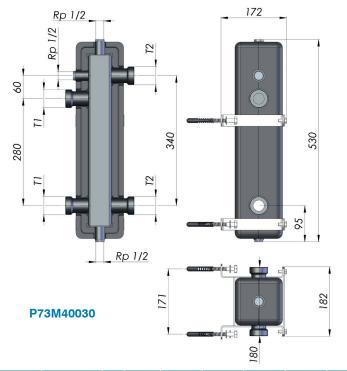
Теплоизоляция (21M.01, 22M.01, P73.DN25, P73.DN32):

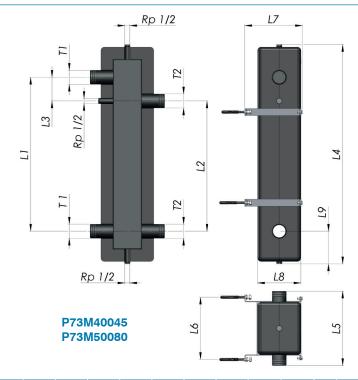
- Материал: ЕРР Плотность: 38 kg/m³
- Толщина: 37 mm
- Теплопроводность: 0,039 W/mK


Теплоизоляция (F09):


- Материал: Вспененный полиэтилен РЕ-Х с закрытыми ячейками
- Толщина: 30 mm
- Плотность: 30-80 kg/m³ (внутренняя-наружная часть)
- Теплопроводность (ISO 2581):
- 0,036-0,043 W/(m·K) (10 °C) (внутренняя-наружная часть)
- 0,041-0,047 W/(m·K) (40 °C) (внутренняя-наружная часть)
- Коэффициент паропроницаемости (ISO 12572): **1300**

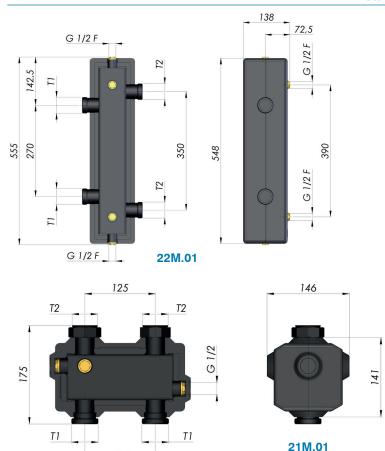
www.barberi.it

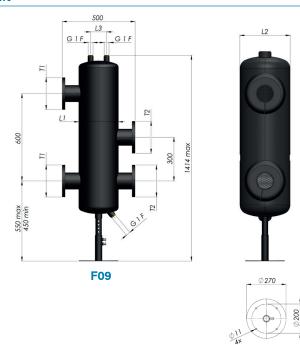

Компоненты



	F73.DN32 103
	21M.01, 22M.01, P73.DN25, P73.DN32, F09
1	Корпус разделителя
2	Основные фитинги на стороне котла
3	Вспомогательные фитинги на стороне коллектора
4	Кронштейны или напольная телескопическая опора
5	Резьбовой фитинг (например, для подсоединения устройства для измерения давления/температуры)
6	Резьбовой фитинг (например, для подсоединения воздухоотводчика)
7	Резьбовой фитинг (например, для подсоединения крана заполнения/слива)
8	Теплоизоляционный кожух

Размеры




Серия	Код	DN	Макс. расход [m³/h]	Мощность [kW] ∆T=10 K	Мощность [kW] ∆T=20 K	T1	T2	L1 [mm]	L2 [mm]	L3 [mm]	L4 [mm]	L5 [mm]	L6 [mm]	L7 [mm]	L8 [mm]	L9 [mm]	Объем [l]	Bec [kg]	N. P/S	N. P/C
P73.DN25	P73 M40 030	25	3	35	70	G 1 1/2 M	G 1 1/2 M	-	-	-	-	-	-	-	-	-	1,6	5	-	1
P/3.DN23	P73 M40 045	25	4,5	53	105	G 1 1/2 M	G 1 1/2 M	360	280	80	585	200	201	182	135	-	2,3	5,85	-	1
P73.DN32	P73 M50 080	32	8	93	186	G 2 M	G 2 M	650	550	100	926	314	263	243	183	138	7,7	13,5	-	1

N. P/S: кол-во в коробке - N. P/C: кол-во в картонной коробке

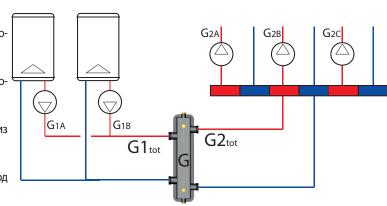
www.barberi.it

Серия	Код	DN	Макс. pacxoд [m³/h]	Мощность [kW] ∆T=10 K	Мощность [kW] ∆T=20 K	Т1	Т2	Объем [I]	Bec [kg]	N. P/S	N. P/C
22M.01	22M 040 000 01	25	4	46,5	93	G 1 1/2 M	G 1 1/2 M	3	3,6	-	1
21M.01	21M 040 000 01	25	3	35	70	G 1 1/2 M	G 1 1/2 RN	1,1	2,5	-	1

N. P/S: кол-во в коробке - N. P/C: кол-во в картонной коробке

Серия	Код	DN	Макс. расход [m³/h]	Мощность [kW] ∆T=10 K	Мощность [kW] ∆T=20 K	ті	Т2	L1 [mm]	L2 [mm]		Объем [I]	Bec [kg]	N. P/S	
F09	F09 100 000	100	33	384	768	DN 100 PN 16	DN 100 PN 16	275	345	110	60	59	-	1
109	F09 150 000	150	74	861	1721	DN 150 PN 16	DN 150 PN 16	355	406	80	101	88	-	1

N. P/S: кол-во в коробке - N. P/C: кол-во в картонной коробке

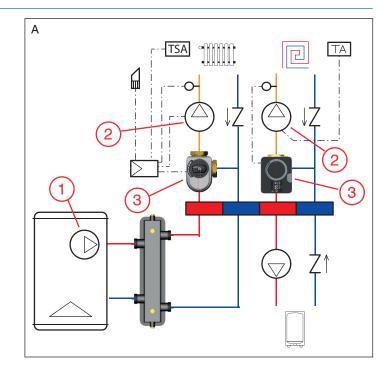

Гидравлические характеристики и расчет параметров

125

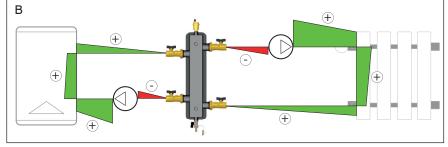
При рекомендуемых значениях максимального расхода, указанных в предыдущих таблицах, гидравлическое сопротивление гидравлических разделителей является пренебрежимо малым. Таким образом, гидравлический разделитель образует зону с почти нулевым гидравлическим сопротивлением, что делает независимыми друг от друга оба подсоединенных к нему контура. Насосы на стороне первичного контура не влияют на работу насосов, расположенных на стороне вторичного контура, и наоборот.

Расчет параметров

- 1) Рассчитайте полную величину расхода в первичном контуре ($G1_{tot}$), просуммировав величины расхода отдельных насосов первичного контура: $G1_{tot} = G_{1,a} + G_{1,B} + ...$
- 2) Рассчитайте полную величину расхода во вторичном контуре ($G2_{tot}$), просуммировав величины расхода отдельных насосов вторичного контура: $G2_{tot} = G_{2A} + G_{2B} + G_{2c} + ...$
- 3) Максимальный расход в системе Gsys: соответствует наибольшему из двух только что рассчитанных значений полных величин расхода $Gsys=MAX\{G1_{tot};G2_{tot}\}$
- 4) Выберите гидравлический разделитель, у которого максимальный расход G равен максимальному расходу в системе Gsys или слегка превышает его: G≥Gsys



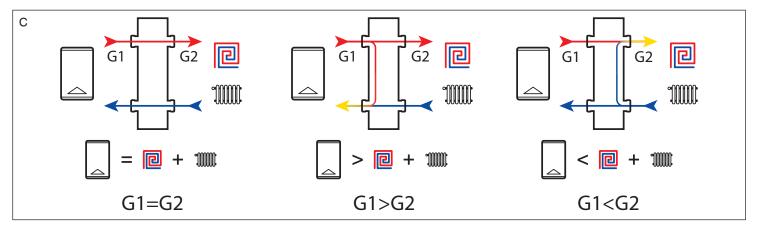
Принцип работы


Гидравлический разделитель служит для гидравлического разъединения насосов теплогенератора (на стороне первичного контура) от насосов, имеющихся в системе отопления/охлаждения (на стороне вторичного контура). Его установка может требоваться в следующих случаях (рис A):

- насос теплогенератора (1) не в состоянии осуществлять непосредственное питание потребителей, что делает необходимым использование дополнительных подающих насосов (2);
- в системах с терморегуляцией, осуществляемой с помощью смесительных клапанов (3), насосы (2) подачи в систему после (на выходе) смесительных клапанов оказываются последовательно соединенными с насосами первичного контура (1), что приводит к суммированию величин напора;
- в системах с терморегуляцией, осуществляемой с помощью смесительных клапанов (3), после достижения комфортной температуры в здании смесительный клапан парциализирует, вплоть до закрытия, подачу горячей воды от теплогенератора (этап поддержания температуры): насос теплогенератора (1), может, таким образом, «сгореть» при попытке направить поток на служащий для входа горячей воды от котла порт смесительного клапана (3), который оказывается (почти) полностью закрытым;

Гидравлический разделитель, образованный имеющим надлежащие характеристики накопителем, создает в контуре зону «покоя» (с очень малой скоростью потока, порядка 0,1-0,2 m/s) с почти нулевым гидравлическим сопротивлением с целью сделать насосы первичного контура независимыми от насосов вторичного контура, предотвращая их воздействие друг на друга (рис. В).

Таким образом, создаются два гидравлически независимых контура: первичный - от теплогенератора до камеры разделителя и вторичный - от камеры разделителя до вторичных систем.

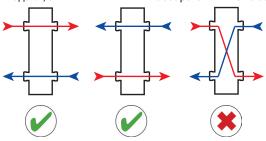


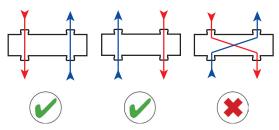
На приведенном рядом рисунке показаны изменения величин давления в обоих контурах. Давление в гидравлическом разделителе будет равным гидростатическому давлению.

На стороне первичного контура могут иметься один или несколько насосов, а на стороне вторичного контура - одна или несколько групп с насосами, работающими в различные моменты времени (регулируемый расход). В зависимости от величин расхода воды, подаваемой насосами первичного контура и насосами вторичного контура, возможны три фазы работы (рис. C):

A) расход в первичном контуре G1 = расходу во вторичном контуре G2: поток воды проходит через разделитель без изменений температуры; В) расход в первичном контуре G1 > расхода во вторичном контуре G2: поток воды, соответствующей излишней части расхода в первичном контуре, подается на рециркуляцию в камере разделителя и возвращается в теплогенератор. При этом достигается повышение температуры воды, возвращающейся в теплогенератор;

C) расход в первичном контуре G1 < расхода во вторичном контуре G2: количество воды, соответствующей недостающей части расхода в первичном контуре, забирается из линии возврата от системы. При этом достигается понижение температуры воды, подаваемой во вторичные контуры.



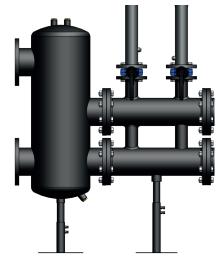

Преимущества

Соосное расположение фитингов в линиях подачи и возврата

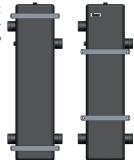
/Гибкость использования фитингов. Обычно верхние фитинги используются для подсоединения к линиям подачи из котла/подачи в систему, а нижние фитинги - для подсоединения к линиям возврата из системы/возврата в котел. Тем не менее, можно полностью менять местами фитинги линий подачи и возврата, не допуская однако их перекрестного расположения: допускается только использование верхних фитингов для подсоединения к линиям подачи, а нижних - к линиям возврата или же наоборот.

Установка в горизонтальном положении. Гидравлические разделители P73.DN25, P73.DN32 и 22M.01 могут также устанавливаться в горизонтальном положении, при условия соблюдения следующего правила: расположения на одной оси фитингов линий подачи из котла и подачи в систему и на другой - фитингов линий возврата. Разделитель 21M.01 специально разработан для установки в горизонтальном положении, но его можно использовать и в вертикальном положении, соблюдая то же самое правило.

Особенности разделителей 22М.01 и F09. Внутри этих разделителей находится сетка, которая, замедляя скорость движения потока, способствует сепарации загрязнителей, оседающих в нижней части разделителей, и скоплению микропузырьков воздуха на их верхней стороне, откуда они могут удаляться с помощью предназначенного для этой цели воздухоотводчика (опционального). Укомплектованы фитингами для подсоединения измерительных приборов.


Особенности разделителя 21M.01. Разработан для непосредственного горизонтального подсоединения к коллекторам DN 25 благодаря межосевому расстоянию 125 mm между фитингами и наличию поворотных накидных гаек на стороне вторичного контура. Укомплектован фитингами для подсоединения измерительных приборов.

Шламоотделение и деаэрация. Благодаря форме своего корпуса гидравлический разделитель может служить также для сбора и слива шлама на нижней стороне и для скопления микропузырьков воздуха, которые можно удалять с помощью опционального воздухоотводчика, на верхней стороне.

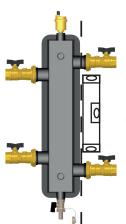


Особенности разделителя F09. Разработан для непосредственного подсоединения к коллекторам DN 100 и DN 150. Оснащен теплоизоляционным кожухом из вспененного полиэтилена PE-X для использования в системах отопления и охлаждения, фитингами G 1 F для подсоединения опциональных принадлежностей, например, воздухоотводчика и крана заполнения/слива.

Установка

На разделителях P73.DN25 и P73.DN32 крепежные кронштейны могут устанавливаться между фитингами или же по краям.

Комплект поставки разделителя 22М.01 не включает в себя крепежные кронштейны; его установка заключается в подсоединении к трубопроводам, которые и выдерживают его вес.



Вертикальные гидравлические разделители 22M.01, P73.DN25 и P73.DN32 могут устанавливаться также и в горизонтальном положении. В этом случае установка воздухоотводчика на оконечности разделителя становится невозможной.

Фланцевые гидравлические разделители обычно устанавливаются вертикально с помощью напольной телескопической опоры.

При установке в вертикальном положении рекомендуется уделять особое внимание обеспечению правильной работы поплавкового воздухоотводчика (опционального).

Описание процедуры установки приведено в руководстве по эксплуатации.

Дополнительные принадлежности

20M.01

Комплект соединительных труб между гидрострелкой 22M04000001 и коллекторами P72 и V34

Макс. рабочая температура: **90°С** Максимальное рабочее давление: **10 бар**

Арт.	соединение	m3/h	₩
20M 040 000 01	G 1 1/2 RN - G 1 1/2 RN	3	1

Y47L

Автоматический воздухоотводчик. Со шпилькой для проверки работы клапана вручную.

Арт.	соединение	*	
Y47 010 000 L	G 3/8 M	10	100
Y4 7 015 000 L	G 1/2 M	10	100
Y47 020 000 L	G 3/4 M	10	100
Y47 025 000 L	G 1 M	10	100

P82

Шаровой сливной кран - с ниппелем и заглушкой

Макс. рабочая температура: **95°С** Максимальное рабочее давление: **16 бар**

Арт.	соединение		
P82 015 N00	G 1/2 M - G 3/4 M	10	40

39D

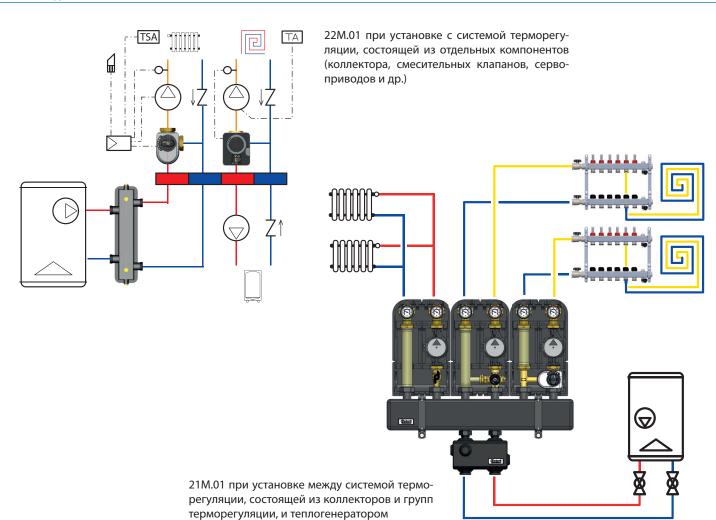
Отсекающий шаровой клапан с соединением для подключения к насосу - HP

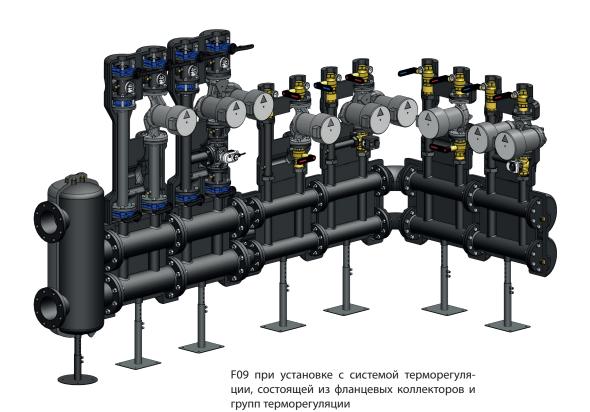
Макс. рабочая температура: **95 ℃** Максимальное рабочее давление: **10 бар**

Арт.	соединение	ручка		
39D 020 000 R	G 1 1/2 RN - G 1 1/2 M	черный	-	25

50D.M50

Отсекающий шаровой клапан с соединением для подключения к насосу и возможностью установки термометра - HP


Макс. рабочая температура: **95 ℃** Максимальное рабочее давление: **10 бар**



Арт.	соединение	ручка		€
50D M50 000 R	G 2 RN - G 2 M	красный	-	25

Схемы соединения

www.barberi.it

Технические описания

Серия 21М.01

Теплоизолированный гидравлический разделитель DN 25 для установки в горизонтальном и вертикальном положении. Укомплектован накидными гайками для подсоединения к коллектору. Корпус из окрашенной стали. Фитинги на стороне первичного контура G 1 1/2 M, фитинги на стороне вторичного контура G 1 1/2 RN с накидной гайкой, фитинги для подсоединения измерительных приборов G 1/2 F. Межосевое расстояние между фитингами 125 mm. Совместимые рабочие жидкости: вода для систем отопления, гликолевые растворы (макс. 30%). Диапазон рабочей температуры 0-110 °C. Максимальное рабочее давление 6 bar. Теплоизоляция из полипропилена.

Серия 22М.01

Теплоизолированный гидравлический разделитель DN 25 с внутренними сетками для облегчения деаэрации и шламоотделения. Корпус из окрашенной стали. Фитинги G 1 1/2 M, фитинги для подсоединения измерительных приборов и дополнительных принадлежностей G 1/2 F. Совместимые рабочие жидкости: вода для систем отопления, гликолевые растворы (макс. 30%). Диапазон рабочей температуры 0-110 °C. Максимальное рабочее давление 10 bar. Теплоизоляция из полипропилена.

Серия Р73.DN25

Теплоизолированный гидравлический разделитель DN 25 с крепежными кронштейнами. Корпус из окрашенной стали. Фитинги G 1 1/2 M, фитинги для подсоединения измерительных приборов и дополнительных принадлежностей Rp 1/2. Совместимые рабочие жидкости: вода для систем отопления, гликолевые растворы (макс. 50%). Диапазон рабочей температуры -10–110 °C. Максимальное рабочее давление 4 bar. Теплоизоляция из полипропилена.

Серия Р73.DN32

Теплоизолированный гидравлический разделитель DN 32 с крепежными кронштейнами. Корпус из окрашенной стали. Фитинги G 2 М, фитинги для подсоединения измерительных приборов и дополнительных принадлежностей Rp 1/2. Совместимые рабочие жидкости: вода для систем отопления, гликолевые растворы (макс. 50%). Диапазон рабочей температуры -10–110 °C. Максимальное рабочее давление 4 bar. Теплоизоляция из полипропилена.

Серия F09

Теплоизолированный фланцевый гидравлический разделитель с телескопической напольной опорой, с внутренними сетками для облегчения деаэрации и шламоотделения, для систем отопления и охлаждения. Корпус из окрашенной стали. Фланцевые соединения DN 100 PN 16 (и DN 150 PN 16), фитинги для подсоединения измерительных приборов G 1 F. Межосевое расстояние между фитингами на сторонах первичного/вторичного контуров 600/300 mm. Совместимые рабочие жидкости: вода для систем отопления, гликолевые растворы (макс. 50%). Диапазон рабочей температуры 0-110 °C. Максимальное рабочее давление 6 bar. Теплоизоляция из вспененного полиэтилена PE-X с закрытыми ячейками.

